42 research outputs found

    Global electricity network - Feasibility study

    Full text link
    With the strong development of renewable energy sources worldwide, the concept of a global electricity network has been imagined in order to take advantage of the diversity from different time zones, seasons, load patterns and the intermittency of the generation, thus supporting a balanced coordination of power supply of all interconnected countries. The TB presents the results of the feasibility study performed by WG C1.35. It addresses the challenges, benefits and issues of uneven distribution of energy resources across the world. The time horizon selected is 2050. The study finds significant potential benefits of a global interconnection, identifies the most promising links, and includes sensitivity analyses to different factors, such as wind energy capacity factors or technology costs

    Estimation of scattered radiation in digital breast tomosynthesis

    Get PDF
    Digital breast tomosynthesis (DBT) is a promising technique to overcome the tissue superposition limitations found in planar 2D x-ray mammography. However, as most DBT systems do not employ an anti-scatter grid, the levels of scattered radiation recorded within the image receptor are significantly higher than that observed in planar 2D x-ray mammography. Knowledge of this field is necessary as part of any correction scheme and for computer modelling and optimisation of this examination. Monte Carlo (MC) simulations are often used for this purpose, however they are computationally expensive and a more rapid method of calculation is desirable. This issue is addressed in this work by the development of a fast kernel-based methodology for scatter field estimation using a detailed realistic DBT geometry. Thickness-dependent scatter kernels, which were validated against the literature with a maximum discrepancy of 4% for an idealised geometry, have been calculated and a new physical parameter (air gap distance) was used to estimate more accurately the distribution of scattered radiation for a series of anthropomorphic breast phantom models. The proposed methodology considers, for the first time, the effects of scattered radiation from the compression paddle and breast support plate, which can represent more than 30% of the total scattered radiation recorded within the image receptor. The results show that the scatter field estimator can calculate scattered radiation images in an average of 80 min for projection angles up to 25° with equal to or less than a 10% error across most of the breast area when compared with direct MC simulations

    Evaluation of non-Gaussian statistical properties in virtual breast phantoms

    No full text
    Images derived from a "virtual phantom" can be useful in characterizing the performance of imaging systems. This has driven the development of virtual breast phantoms implemented in simulation environments. In breast imaging, several such phantoms have been proposed. We analyze the non-Gaussian statistical properties from three classes of virtual breast phantoms and compare them to similar statistics from a database of breast images. These include clustered-blob lumpy backgrounds (CBLBs), truncated binary textures, and the UPenn virtual breast phantoms. We use Laplacian fractional entropy (LFE) as a measure of the non-Gaussian statistical properties of each simulation procedure. Our results show that, despite similar power spectra, the simulation approaches differ considerably in LFE with very low scores for the CBLB to high values for the UPenn phantom at certain frequencies. These results suggest that LFE may have value in developing and tuning virtual phantom simulation procedures
    corecore